翻訳と辞書
Words near each other
・ "O" Is for Outlaw
・ "O"-Jung.Ban.Hap.
・ "Ode-to-Napoleon" hexachord
・ "Oh Yeah!" Live
・ "Our Contemporary" regional art exhibition (Leningrad, 1975)
・ "P" Is for Peril
・ "Pimpernel" Smith
・ "Polish death camp" controversy
・ "Pro knigi" ("About books")
・ "Prosopa" Greek Television Awards
・ "Pussy Cats" Starring the Walkmen
・ "Q" Is for Quarry
・ "R" Is for Ricochet
・ "R" The King (2016 film)
・ "Rags" Ragland
・ ! (album)
・ ! (disambiguation)
・ !!
・ !!!
・ !!! (album)
・ !!Destroy-Oh-Boy!!
・ !Action Pact!
・ !Arriba! La Pachanga
・ !Hero
・ !Hero (album)
・ !Kung language
・ !Oka Tokat
・ !PAUS3
・ !T.O.O.H.!
・ !Women Art Revolution


Dictionary Lists
翻訳と辞書 辞書検索 [ 開発暫定版 ]
スポンサード リンク

vacuum polarization : ウィキペディア英語版
vacuum polarization
In quantum field theory, and specifically quantum electrodynamics, vacuum polarization describes a process in which a background electromagnetic field produces virtual electronpositron pairs that change the distribution of charges and currents that generated the original electromagnetic field. It is also sometimes referred to as the self energy of the gauge boson (photon).
The effects of vacuum polarization were first observed experimentally prior to 1947 before they were theoretically calculated (by Hans Bethe on the return train ride from the Shelter Island Conference to Cornell) after developments in radar equipment for World War II resulted in higher accuracy for measuring the energy levels of the hydrogen atom (the Lamb shift) and the anomalous magnetic dipole moment of the electron (corresponding to the deviation from the Dirac equation predicted value of 2 of the spectroscopic electron g-factor value), measured by I.I. Rabi.
The effects of vacuum polarization have been routinely observed experimentally since then as very well understood background effects. Vacuum polarization referred to below as the one loop contribution occurs with leptons (electron-positron pairs) or quarks, the former (leptons) first observed in 1940s but also recently observed in 1997 using the TRISTAN particle accelerator in Japan,
the latter (quarks) along with multiple quark-gluon loop contributions from the early 1970s to mid-1990s using the VEPP-2M particle accelerator at the Budker Institute of Nuclear Physics in Siberia in Russia and many other accelerator laboratories worldwide.
== Explanation ==
According to quantum field theory, the vacuum between interacting particles is not simply empty space. Rather, it contains short-lived "virtual" particle–antiparticle pairs (leptons or quarks and gluons) which are created out of the vacuum in amounts of energy constrained in time by the energy-time version of the Heisenberg uncertainty principle. After the constrained time, which is smaller (larger) the larger (smaller) the energy of the fluctuation, they then annihilate each other.
These particle–antiparticle pairs carry various kinds of charges, such as color charge if they are subject to QCD such as quarks or gluons, or the more familiar electromagnetic charge if they are electrically charged leptons or quarks, the most familiar charged lepton being the electron and since it is the lightest in mass, the most numerous due to the energy-time uncertainty principle as mentioned above; e.g., virtual electron–positron pairs. Such charged pairs act as an electric dipole. In the presence of an electric field, e.g., the electromagnetic field around an electron, these particle–antiparticle pairs reposition themselves, thus partially counteracting the field (a partial screening effect, a dielectric effect). The field therefore will be weaker than would be expected if the vacuum were completely empty. This reorientation of the short-lived particle-antiparticle pairs is referred to as vacuum polarization.
The one-loop contribution of a fermion–antifermion pair to the vacuum polarization is represented by the following diagram:
:

抄文引用元・出典: フリー百科事典『 ウィキペディア(Wikipedia)
ウィキペディアで「vacuum polarization」の詳細全文を読む



スポンサード リンク
翻訳と辞書 : 翻訳のためのインターネットリソース

Copyright(C) kotoba.ne.jp 1997-2016. All Rights Reserved.